1) What is the equilibrium expression for this equation?

$$\mathbf{A} + 2\mathbf{B} \rightleftarrows 3\mathbf{C} + \mathbf{D}$$

- (A)  $\frac{[C]^3 [D]}{[A] [B]^3}$
- (B)  $\frac{[A][B]^2}{[C]^3[D]}$
- (C)  $\frac{[3C][D]}{[A][2B]}$
- D)  $\frac{[A][2B]}{[3C][D]}$

Which change to this system at equilibrium will increase the concentration of  $Br_{2(g)}$ ?  $4HBr_{(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(g)} + 2Br_{2(g)} \quad \Delta H = -276 \text{ kJ}$ 

- (A) an increase in pressure
- (B) an increase in temperature
- (C) the removal of oxygen,  $O_2$
- (D) the addition of water vapor,  $H_2O(g)$

3) How many sugar molecules are there in 1.00 mL of 0.100 M sugar solution?

- (A) 1.  $20 \times 10^{24}$
- (B) 6.  $02 \times 10^{19}$

2

- (C)  $6.02 \times 10^{23}$
- (D)  $3.01 \times 10^{18}$
- (E)  $3.01 \times 10^{19}$

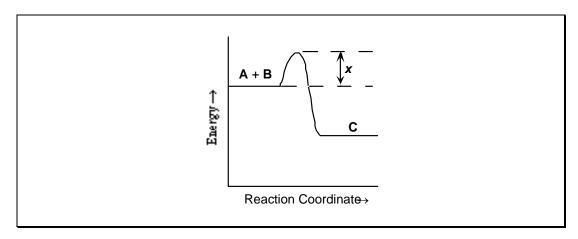
4) The number of valence electrons in the outermost shell of O is

- (A) 8
- (B)
- (C) 3
- (D)

6

Sr

(E) 5


5) What is the hydrogen ion concentration, [H<sup>+</sup>], of a 0.001 M solution of sodium hydroxide, NaOH?

- (A)  $1 \times 10^{-3} \text{ M}$
- (C)  $1 \times 10^{-11} \text{ M}$
- (B)  $1 \times 10^{-9} \text{ M}$
- (D)  $1 \times 10^{-14} \text{ M}$

6) Which element is the *most* electronegative?

- (A) Be
- (B)
- Mg
- (C) Ca
- (D)
- (E) Ba

7) This potential energy diagram shows that the reaction  $A + B \rightarrow C$  is



- (A) slow.
- (B) endothermic.
- (C) rapid.
- (D) at equilibrium.
- (E) exothermic.

| (A)        | 65.93 kJ·mol⁻¹                                       |                      |                            |              |
|------------|------------------------------------------------------|----------------------|----------------------------|--------------|
| (B)        | 263.7 kJ·mol⁻¹                                       |                      |                            |              |
| (C)        | 131.9 kJ⋅mol <sup>-1</sup>                           |                      |                            |              |
| (D)        | 395.6 kJ⋅mol <sup>-1</sup>                           |                      |                            |              |
| (E)        | 197.8 kJ⋅mol <sup>-1</sup>                           |                      |                            |              |
| In which p | pair do <i>both</i> compounds exh                    | ibit ionic bonding?  |                            |              |
| (A) S      | SO <sub>2</sub> , HCl (B) KCl, CO <sub>2</sub>       | (C) $KNO_3$ , $CH_4$ | (D) NaCl, H <sub>2</sub> O | (E) NaF, KBr |
| (A)        | Its atoms repel each other                           |                      |                            |              |
|            |                                                      |                      |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)        | The bond is primarily ion                            | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |
| (B)<br>(C) | The bond is primarily ion. The bond is primarily met | ic.<br>tallic.       |                            |              |