The Mole and % Composition

The mole

- The mole is simply a counting number just like a dozen.
- The mole is an extremely large number!
- 6.02x10²³
- This is only useful for counting amounts of very small things. (like atoms and molecules)
- It is called Avogadro's number, and it was determined to be the exact amount of particles necessary to make the atomic mass on the periodic table to be in grams.

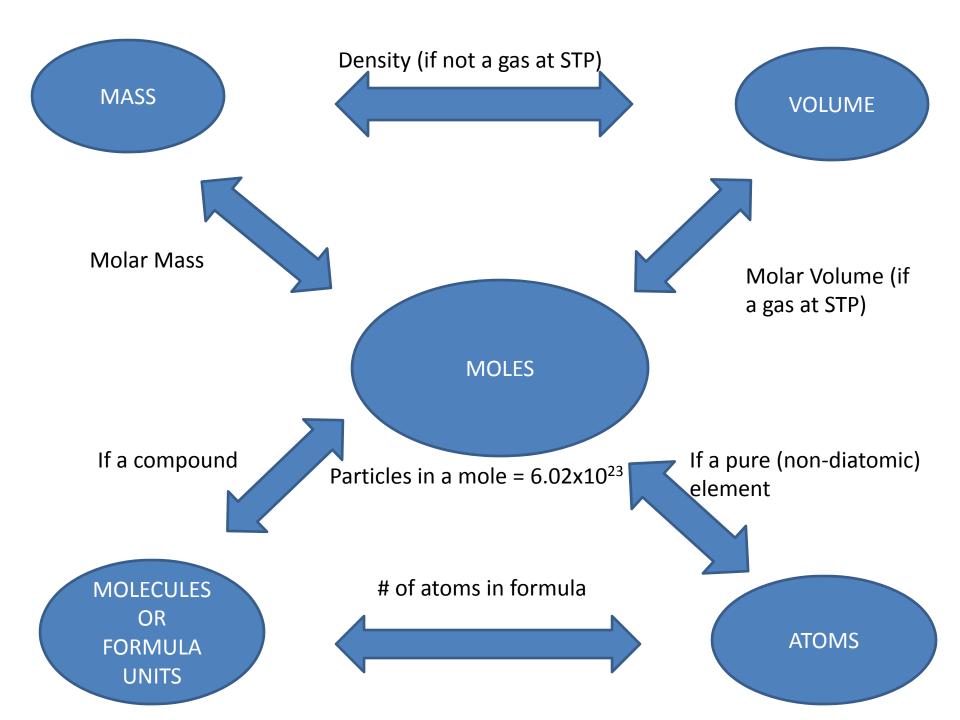
Molar Mass

- To get the mass of one mole of a substance, just add up its atomic masses of each atom from the periodic table.
- Ex. 1 mole C = 12.01g
- 1 mole $O_2 = 2(16.00) = 32g$
- 1 mole $H_2S = 2(1.01) + 32.06 = 34.08g$
- 1 mole $BaSO_4 = 137.33 + 32.06 + 4(16.00) = 233.39g$
- This is what you use every time you convert from grams to moles or moles to grams.

Molar Volume

- All gases act the same because their molecules are so far apart.
- Therefore the volume per mole of any gas is the same.
- Volumes of gases are greatly effected by temperature and pressure, so standard conditions are determined called STP (0°C and 1 atmosphere of pressure).
- The volume of 1 mole of any gas at STP = 22.4L
- Sooooo... 1 mole of He, CO_2 , or $O_2 = 22.4L$

Not a Gas


- The molar volume relates a gas at STP to one mole, if it is a gas that is not at STP, we will deal with it in a later chapter.
- If it is not a gas at all, then you can not go directly from volume to moles, you must use the density.
- Use density to covert volume to grams, then use atomic mass to convert from grams to moles.

Numbers of particles

- Numbers of particles in a mole is always equal to 6.02x10²³.
- The type of particle is determined by the chemical make-up of a substance:
 - Element (non diatomic) atoms
 - Molecular compound or diatomic element molecule
 - Ionic compound formula unit (F.U.)
- So 1 mole of Fe = 6.02×10^{23} atoms
- 1 mole of $O_2 = 6.02 \times 10^{23}$ molecules
- 1 mole of NaCl = 6.02×10^{23} formula units

From compounds to atoms

- If you need to know how many atoms are in a certain number of moles of a compound, then you can't go direct, you have to convert to molecules/F.U.'s first.
- Figure out by looking at the formula for the compound how many atoms are present.
- Ex. $H_2SO_4 = 7$ atoms
- How many atoms are in a 3.2mole sample of sulfuric acid?
- 3.2mole $_{x}$ 6.02x10²³F.U.'s $_{x}$ 7 atoms $_{=}$ 1.35x10²⁵ atoms 1 mole 1 F.U.

Percent Composition

- All percent composition is by mass.
- It is used to determine the amount of one element in a compound.
- <u>Grams of element</u> × 100 = %composition total g in compound
- Percent composition is always the same regardless of sample size.
- This means that if you find it using molar masses, those percents will apply to any other size sample.